您选择的条件: Zheng Yuan
  • Versatile Non-diffracting Perfect Vortex Beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The rapid scale broadening and divergence increasing of vortex beams (VBs) with orbital angular momentum (OAM), e.g., Laguerre-Gaussian beams, severely impede the wide applications of VBs ranging from optical manipulation to high-dimensional quantum information communications, which call for VBs to have the same transverse scale and divergence for distinct OAM or even the small vortex ring for large OAM. Non-diffracting beams, on the other hand, that are capable of overcoming diffraction without divergence, are very evocative and indeed appealing in numerous applications including atom optics and medical imaging. Here, we propose theoretically and demonstrate experimentally a brand new type of VB having OAM-independent radii meanwhile holding propagation-invariant without divergence as well as self-healing properties, named non-diffracting perfect vortex beam (NDPVB). We work out a versatile toolkit based on Fourier-space analysis to multidimensionally customize NDPVBs at will so that it is of propagating intensity and phase controllability with intriguing customizable behaviors of self-accelerating, self-similar, and self-rotating. This goes beyond tailoring the transverse plane to the higher-dimensional propagating characteristics in structured light beams. A deeper insight into the internal flow revealed and confirmed that the multidimensional customization of NDPVBs is dominated by inducing corresponding multidimensional internal flow, facilitating our understanding of how our design scheme of propagating properties manipulates the internal flows, unveiling the nature of structure formation and behavior transformation of structured light beams.

  • Customizable Laguerre-Gaussian Perfect Vortex Beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The recognition in the 1990s that vortex beams (VBs), paraxial light beams with optical vortices, carry orbital angular momentum (OAM), has benefited applications ranging from optical manipulation to high-dimensional classical and quantum information communications. The transverse profiles of common VBs, e.g., Laguerre-Gaussian beam and high-order Bessel beam, are hollow donuts whose radii grow up with OAM inevitably. The inherently unperfect character of the VBs that the radius is always positively correlated with OAM, restricts the application of the VBs in many scenarios like fiber optic data transmission, spatial OAM mode (de)multiplexing communication, and particle manipulation, which call for VBs to have the same scale with distinct OAM or even the small vortex ring for large OAM. Here, we derived a theory based on the most widely used Laguerre-Gaussian beam to generate a brand new type of VB with OAM-independent radii that moves away from the common unperfect constraint, called Laguerre-Gaussian Perfect Vortex Beam (LGPVB). LGPVBs have the self-similar property like common Laguerre-Gaussian beams but can self-heal after suffering disturbance and always remain 'perfection' when propagating. Our Fourier-space design not only allows us to shape the LGPVB's propagating intensity at will, but it also gives LGPVB the fascinating potential to arbitrarily self-accelerate while still perfectly propagating, self-similar, and self-healing. This customizable self-healing LGPVB, whose properties inform our most expectations of VBs, offers a better alternative for application scenarios of common VBs in a wide range of areas.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心