您选择的条件: Qi Li
  • Multiple-access relay stations for long-haul fiber-optic radio frequency transfer

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report on the realization of a long-haul radio frequency (RF) transfer scheme by using multiple-access relay stations (MARSs). The proposed scheme with independent link noise compensation for each fiber sub-link effectively solves the limitation of compensation bandwidth for long-haul transfer. The MARS can have the capability to share the same modulated optical signal for the front and rear fiber sub-links, simplifying the configuration at the repeater station and enabling the transfer system to have the multiple-access capability. At the same time, we for the first time theoretically model the effect of the MARS position on the fractional frequency instability of the fiber-optic RF transfer, demonstrating that the MARS position has little effect on system's performance when the ratio of the front and rear fiber sub-links is around $1:1$. We experimentally demonstrate a 1 GHz signal transfer by using one MARS connecting 260 and 280 km fiber links with the fractional frequency instabilities of less than $5.9\times10^{-14}$ at 1 s and $8.5\times10^{-17}$ at 10,000 s at the remote site and of $5.6\times10^{-14}$ and $6.6\times10^{-17}$ at the integration times of 1 s and 10,000 s at the MARS. The proposed scalable technique can arbitrarily add the same MARSs in the fiber link, which has great potential in realizing ultra-long-haul RF transfer.

  • Fiber radio frequency transfer using bidirectional frequency division multiplexing dissemination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report on the realization of a novel fiber-optic radio frequency (RF) transfer scheme with the bidirectional frequency division multiplexing (FDM) dissemination technique. Here, the proper bidirectional frequency map used in the forward and backward directions for suppressing the backscattering noise and ensuring the symmetry of the bidirectional transfer RF signals within one telecommunication channel. We experimentally demonstrated a 0.9 GHz signal transfer over a 120 km optical link with the relative frequency stabilities of 2.2E-14 at 1 s and 4.6E-17 at 20,000 s. The implementation of phase noise compensation at the remote site has the capability to perform RF transfer over a branching fiber network with the proposed technique as needed by large-scale scientific experiments.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心