您选择的条件: Ming Li
  • Surpassing the classical limit of microwave photonic frequency fading effect by quantum microwave photonics

    分类: 光学 >> 量子光学 提交时间: 2023-02-25

    摘要: With energy-time entangled biphoton sources as the optical carrier and time-correlated single-photon detection for high-speed radio frequency (RF) signal recovery, the method of quantum microwave photonics (QMWP) has presented the unprecedented potential of nonlocal RF signal encoding and efficient RF signal distilling from the dispersion interference associated with ultrashort pulse carriers. In this letter, its capability in microwave signal processing and prospective superiority is further demonstrated. Both the QMWP RF phase shifting and transversal filtering functionality, which are the fundamental building blocks of microwave signal processing, are realized. Besides the perfect immunity to the dispersion-induced frequency fading effect associated with the broadband carrier in classical microwave photonics, a native two-dimensional parallel microwave signal processor is provided. These demonstrations fully prove the superiority of QMWP over classical MWP and open the door to new application fields of MWP involving encrypted processing.

  • Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing ($\chi^{(2)}$ and $\chi^{(3)}$) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the $\chi^{(3)}$ has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process ($\chi^{(4)}$) is synthesized for the first time, by incorporating $\chi^{(2)}$ and $\chi^{(3)}$ processes in a single microcavity. The coherence of the synthetic $\chi^{(4)}$ is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over $500$ times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

  • Break the efficiency limitations of dissipative Kerr soliton using nonlinear couplers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dissipative Kerr soliton (DKS) offers a compact solution of coherent comb sources and holds huge potential for applications, but has long been suffering from poor power conversion efficiency when driving by a continuous-wave laser. Here, a general approach to resolving this challenge is provided. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework, two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. Nonlinear couplers are proposed to sustain the DKS indirectly through nonlinear energy conversion processes, realizing a power-adaptive effective coupling rate to the DKS and matching the total dissipation rate of the system, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding $90\:\%$ is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The nonlinear coupler approach for high-efficiency generation of DKS is experimentally feasible as its mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way of micro-solitons towards practical applications.

  • A proof-of-principle demonstration of quantum microwave photonics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: With the rapid development of microwave photonics, which has expanded to numerous applications of commercial importance, eliminating the emerging bottlenecks becomes of vital importance. For example, as the main branch of microwave photonics, radio-over-fiber technology provides high bandwidth, low-loss, and long-distance propagation capability, facilitating wide applications ranging from telecommunication to wireless networks. With ultrashort pulses as the optical carrier, huge capacity is further endowed. However, the wide bandwidth of ultrashort pulses results in the severe vulnerability of high-frequency RF signals to fiber dispersion. With a time-energy entangled biphoton source as the optical carrier and combined with the single-photon detection technique, a quantum microwave photonics method is proposed and demonstrated experimentally. The results show that it not only realizes unprecedented nonlocal RF signal modulation with strong resistance to the dispersion associated with ultrashort pulse carriers but provides an alternative mechanism to effectively distill the RF signal out from the dispersion. Furthermore, the spurious-free dynamic range of both the nonlocally modulated and distilled RF signals has been significantly improved. With the ultra-weak detection and high-speed processing advantages endowed by the low-timing-jitter single-photon detection, the quantum microwave photonics method opens up new possibilities in modern communication and networks.

  • Quantum effects beyond mean-field treatment in quantum optics

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Mean-field treatment (MFT) is frequently applied to approximately predict the dynamics of quantum optics systems, to simplify the system Hamiltonian through neglecting certain modes that are driven strongly or couple weakly with other modes. While in practical quantum systems, the quantum correlations between different modes might lead to unanticipated quantum effects and lead to significantly distinct system dynamics. Here, we provide a general and systematic theoretical framework based on the perturbation theory in company with the MFT to capture these quantum effects. The form of nonlinear dissipation and parasitic Hamiltonian are predicted, which scales inversely with the nonlinear coupling rate. Furthermore, the indicator is also proposed as a measure of the accuracy of mean-field treatment. Our theory is applied to the example of quantum frequency conversion, in which mean-field treatment is commonly applied, to test its limitation under strong pump and large coupling strength. The analytical results show excellent agreement with the numerical simulations. Our work clearly reveals the attendant quantum effects under mean-field treatment and provides a more precise theoretical framework to describe quantum optics systems.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心