您选择的条件: Yijun Xie
  • Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we comprehensively study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We first bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally infeasible for externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton's cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.

  • Spatiotemporal mode-locking and photonic flywheel in multimode microresonators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dissipative Kerr soliton (DKS) frequency combs - also known as microcombs - have arguably created a new field in cavity nonlinear photonics, with a strong cross-fertilization between theoretical, experimental, and technological research. Spatiotemporal mode-locking (STML) not only add new degrees of freedom to ultrafast laser technology, but also provide new insights for implementing analogue computers and heuristic optimizers with photonics. Here, we combine the principles of DKS and STML for the first time to demonstrate the STML DKS by developing an unexplored ultrahigh-quality-factor Fabry-Perot microresonator based on graded index multimode fiber (GRIN-MMF). Using the intermodal stimulated Brillouin scattering, we can selectively excite either the eigenmode DKS or the STML DKS. Furthermore, we demonstrate an ultralow noise microcomb that enhances the photonic flywheel performance in both the fundamental comb linewidth and DKS timing jitter. The demonstrated fundamental comb linewidth of 400 mHz and DKS timing jitter of 500 attosecond represent improvements of 25x and 2.5x, respectively, from the state-of-the-art. Our results show the potential of GRIN-MMF FP microresonators as an ideal testbed for high-dimensional nonlinear cavity dynamics and photonic flywheel with ultrahigh coherence and ultralow timing jitter.

  • Photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Optical frequency comb, with precisely controlled spectral lines spanning a broad range, has been the key enabling technology for many scientific breakthroughs. In addition to the traditional implementation based on modelocked lasers, photonic frequency microcombs based on dissipative Kerr and quadratic cavity solitons in high-Q microresonators have become invaluable in applications requiring compact footprint, low cost, good energy efficiency, large comb spacing, and access to nonconventional spectral regions. In this review, we comprehensively examine the recent progress of photonic frequency microcombs and discuss how various phenomena can be utilized to enhance the microcomb performances that benefit a plethora of applications including optical atomic clockwork, optical frequency synthesizer, precision spectroscopy, astrospectrograph calibration, biomedical imaging, optical communications, coherent ranging, and quantum information science.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心