您选择的条件: Dong Zhou
  • Omnidirectional ghost imaging system && unwrapping-free panoramic ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{\deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.

  • Temporally and Spatially variant-resolution illumination patterns in computational ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Conventional computational ghost imaging (CGI) uses light carrying a sequence of patterns with uniform-resolution to illuminate the object, then performs correlation calculation based on the light intensity value reflected by the target and the preset patterns to obtain object image. It requires a large number of measurements to obtain high-quality images, especially if high-resolution images are to be obtained. To solve this problem, we developed temporally variable-resolution illumination patterns, replacing the conventional uniform-resolution illumination patterns with a sequence of patterns of different imaging resolutions. In addition, we propose to combine temporally variable-resolution illumination patterns and spatially variable-resolution structure to develop temporally and spatially variable-resolution (TSV) illumination patterns, which not only improve the imaging quality of the region of interest (ROI) but also improve the robustness to noise. The methods using proposed illumination patterns are verified by simulations and experiments compared with CGI. For the same number of measurements, the method using temporally variable-resolution illumination patterns has better imaging quality than CGI, but it is less robust to noise. The method using TSV illumination patterns has better imaging quality in ROI than the method using temporally variable-resolution illumination patterns and CGI under the same number of measurements. We also experimentally verify that the method using TSV patterns have better imaging performance when applied to higher resolution imaging. The proposed methods are expected to solve the current computational ghost imaging that is difficult to achieve high-resolution and high-quality imaging.

  • Complementary Fourier single-pixel imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Single-pixel imaging, with the advantages of a wide spectrum, beyond-visual-field imaging, and robustness to light scattering, has attracted increasing attention in recent years. Fourier single-pixel imaging (FSI) can reconstruct sharp images under sub-Nyquist sampling. However, the conventional FSI has difficulty with balancing the imaging quality and efficiency. To overcome this issue, we proposed a novel approach called complementary Fourier single-pixel imaging (CFSI) to reduce measurements while retaining its robustness. The complementary nature of Fourier patterns based on a four-step phase-shift algorithm is combined with the complementary nature of a digital micromirror device. CFSI only requires two phase-shifted patterns to obtain one Fourier spectral value. Four light intensity values are obtained by load the two patterns, and the spectral value is calculated through differential measurement, which has good robustness to noise. The proposed method is verified by simulations and experiments compared with FSI based on two-, three-, and four-step phase shift algorithms. CFSI performed better than the other methods under the condition that the best imaging quality of CFSI is not reached. The reported technique provides an alternative approach to realize real-time and high-quality imaging.

  • Optimization of retina-like illumination patterns in ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Ghost imaging (GI) reconstructs images using a single-pixel or bucket detector, which has the advantages of scattering robustness, wide spectrum and beyond-visual-field imaging. However, this technique needs large amount of measurements to obtain a sharp image. There have been a lot of methods proposed to overcome this disadvantage. Retina-like patterns, as one of the compressive sensing approaches, enhance the imaging quality of region of interest (ROI) while not increase measurements. The design of the retina-like patterns determines the performance of the ROI in the reconstructed image. Unlike the conventional method to fill in ROI with random patterns, we propose to optimize retina-like patterns by filling in the ROI with the patterns containing the sparsity prior of objects. This proposed method is verified by simulations and experiments compared with conventional GI, retina-like GI and GI using patterns optimized by principal component analysis. The method using optimized retina-like patterns obtain the best imaging quality in ROI than other methods. Meanwhile, the good generalization ability of the optimized retina-like pattern is also verified. While designing the size and position of the ROI of retina-like pattern, the feature information of the target can be obtained to optimize the pattern of ROI. This proposed method paves the way for realizing high-quality GI.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心