您选择的条件: Yuntian Chen
  • Design optimization of band-pass filter based on parity-time symmetry coupled-resonant

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Integrated optical filter based on microring resonators plays a critical role in many applications, ranging from wavelength division multiplexing and switching to channel routing. Bandwidth tunable filters are capable of meeting the on-demand flexible operations in complex situations, due to their advantages of scalability, multi-function, and energy-saving. It has been investigated recently that parity-time (PT) symmetry coupled-resonant systems can be applied to the bandwidth-tunable filters. However, due to the trade-off between the bandwidth-tunable contrast ratio and insertion loss of system, the bandwidth-tunable contrast ratio of this method is severely limited. Here, the bandwidth-tunable contrast ratio is defined as the maximum bandwidth divided by the minimum bandwidth. In this work, we show that high bandwidth-tunable contrast ratio and low insertion loss of system can be achieved simultaneously by increasing the coupling strength between the input port and the resonant. System characterizations under different coupling states reveal that the low insertion loss can be obtained when the system initially operates at the over-coupling condition. A high bandwidth-tunable contrast ratio PT-symmetry band-pass filter with moderate insertion loss is shown on the Silicon platform. Our scheme provides an effective method to reduce the insertion loss of on-chip tunable filters, which is also applicable to the high-order cascaded microring systems.

  • Non-Hermitian singularities induced single-mode depletion and soliton formation in microresonators

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: On-chip manipulation of single resonance over broad background comb spectra of microring resonators is indispensable, ranging from tailoring laser emission, optical signal processing to non-classical light generation, yet challenging without scarifying the quality factor or inducing additional dispersive effects. Here, we propose an experimentally feasible platform to realize on-chip selective depletion of single resonance in microring with decoupled dispersion and dissipation, which are usually entangled by Kramer-Kroning relation. Thanks to the existence of non-Hermitian singularity, unsplit but significantly increased dissipation of the selected resonance is achieved due to the simultaneous collapse of eigenvalues and eigenvectors, fitting elegantly the requirement of pure single-mode depletion. With delicate yet experimentally feasible parameters, we show explicit evidence of modulation instability as well as deterministic single soliton generation in microresonators induced by depletion in normal and anomalous dispersion regime, respectively. Our findings connect non-Hermitian singularities to wide range of applications associated with selective single mode manipulation in microwave photonics, quantum optics, ultrafast optics and beyond.

  • Topology-enabled highly efficient beam combination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Beam combination with high efficiency is desirable to overcome the power limit of single electromagnetic sources, enabling long-distance optical communication and high-power laser. The efficiency of coherent beam combination is severely limited by the phase correlation between different input light beams. Here, we theoretically proposed and experimentally demonstrated a new mechanism for beam combining, the topology-enabled beam combination (TEBC), from multiple spatial channels with high efficiency based on a unidirectional topological edge state. We show that the topologically protected power orthogonal excitation arising from both the unidirectional edge states and the energy conservation ensures -0.31dB (93%) efficiency experimentally for a multi-channel combination of coherent microwaves at 9.1-9.3 GHz. Moreover, we demonstrate broadband, phase insensitive, and high-efficiency beam combination using the TEBC mechanism with one single topological photonic crystal device, which significantly reduces the device footprint and design complexity. Our scheme transcends the limits of the required phase correlations in the scenario of coherent beam combination and the number of combined channels in the scenario of incoherent beam combination.

  • Nonreciprocal light propagation induced by a subwavelength spinning cylinder

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nonreciprocal optical devices have broad applications in light manipulations for communications and sensing. Non-magnetic mechanisms of optical nonreciprocity are highly desired for high-frequency on-chip applications. Here, we investigate the nonreciprocal properties of light propagation in a dielectric waveguide induced by a subwavelength spinning cylinder. We find that the chiral modes of the cylinder can give rise to unidirectional coupling with the waveguide via the transverse spin-orbit interaction, leading to different transmissions for guided wave propagating in opposite directions and thus optical isolation. We reveal the dependence of the nonreciprocal properties on various system parameters including mode order, spinning speed, and coupling distance. The results show that higher-order chiral modes and larger spinning speed generally give rise to stronger nonreciprocity, and there exists an optimal cylinder-waveguide coupling distance where the optical isolation reaches the maximum. Our work contributes to the understanding of nonreciprocity in subwavelength moving structures and can find applications in integrated photonic circuits, topological photonics, and novel metasurfaces.

  • Robust exceptional point of arbitrary order in coupled spinning cylinders

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Exceptional points (EPs), i.e., non-Hermitian degeneracies at which eigenvalues and eigenvectors coalesce, can be realized by tuning the gain/loss contrast of different modes in non-Hermitian systems or by engineering the asymmetric coupling of modes. Here we demonstrate a mechanism that can achieve EPs of arbitrary order by employing the non-reciprocal coupling of spinning cylinders sitting on a dielectric waveguide. The spinning motion breaks the time-reversal symmetry and removes the degeneracy of opposite chiral modes of the cylinders. Under the excitation of a linearly polarized plane wave, the chiral mode of one cylinder can unidirectionally couple to the same mode of the other cylinder via the spin-orbit interaction associated with the evanescent wave of the waveguide. The structure can give rise to arbitrary-order EPs that are robust against spin-flipping perturbations, in contrast to conventional systems relying on spin-selective excitations. In addition, we show that higher-order EPs in the proposed system are accompanied by enhanced optical isolation, which may find applications in designing novel optical isolators, nonreciprocal optical devices, and topological photonics.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心