您选择的条件: Menglin L. N. Chen
  • Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The effects of gain and loss on the band structures of a bulk topological dielectric photonic crystal (PC) with $C_{6v}$ symmetry and the PC-air-PC interface are studied based on first-principle calculation. To illustrate the importance of parity-time (PT) symmetry, three systems are considered, namely the PT-symmetric, PT-asymmetric, and lossy systems. We find that the system with gain and loss distributed in a PT symmetric manner exhibits a phase transition from a PT exact phase to a PT broken phase as the strength of the gain and loss increases, while for the PT-asymmetric and lossy systems, no such phase transition occurs. Furthermore, based on the Wilson loop calculation, the topology of the PT-symmetric system in the PT exact phase is demonstrated to keep unchanged as the Hermitian system. At last, different kinds of edge states in Hermitian systems under the influences of gain and loss are studied and we find that while the eigenfrequencies of nontrivial edge states become complex conjugate pairs, they keep real for the trivial defect states.

  • Approaching the Fundamental Limit of Orbital Angular Momentum Multiplexing Through a Hologram Metasurface

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Establishing and approaching the fundamental limit of orbital angular momentum (OAM) multiplexing are necessary and increasingly urgent for current multiple-input multiple-output research. In this work, we elaborate the fundamental limit in terms of independent scattering channels (or degrees of freedom of scattered fields) through angular-spectral analysis, in conjunction with a rigorous Green function method. The scattering channel limit is universal for arbitrary spatial mode multiplexing, which is launched by a planar electromagnetic device, such as antenna, metasurface, etc, with a predefined physical size. As a proof of concept, we demonstrate both theoretically and experimentally the limit by a metasurface hologram that transforms orthogonal OAM modes to plane-wave modes scattered at critically separated angular-spectral regions. Particularly, a minimax optimization algorithm is applied to suppress angular spectrum aliasing, achieving good performances in both full-wave simulation and experimental measurement at microwave frequencies. This work offers a theoretical upper bound and corresponding approach route for engineering designs of OAM multiplexing.

  • A brief review of topological photonics in one, two, and three dimensions

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics has attracted increasing attention in recent years due to the unique opportunities it provides to manipulate light in a robust way immune to disorder and defects. Up to now, diverse photonic platforms, rich physical mechanisms and fruitful device applications have been proposed for topological photonics, including one-way waveguide, topological lasing, topological nanocavity, Dirac and Weyl points, Fermi arcs, nodal lines, etc. In this review, we provide an introduction to the field of topological photonics through the lens of topological invariants and bulk-boundary correspondence in one, two, and three dimensions, which may not only offer a unified understanding about the underlying robustness of diverse and distinct topological phenomena of light, but could also inspire further developments by introducing new topological invariants and unconventional bulk-boundary correspondence to the research of topological photonics.

  • Large-area quantum-spin-Hall waveguide states in a three-layer topological photonic crystal heterostructure

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonic edge states are conventionally formed at the interface between two domains of topologically trivial and nontrivial photonic crystals. Recent works exploiting photonic quantum Hall and quantum valley Hall effects have shown that large-area topological waveguide states could be created in a three-layer topological heterostructure that consists of a finite-width domain featuring Dirac cone sandwiched between two domains of photonic crystals with opposite topological properties. In this work, we show that a new kind of large-area topological waveguide states could be created employing the photonic analogs of quantum spin Hall effect. Taking the well-used Wu-Hu model in topological photonics as an example, we show that sandwiching a finite-width domain of photonic crystal featuring double Dirac cone between two domains of expanded and shrunken unit cells could lead to the emergence of large-area helical waveguide states distributed uniformly in the middle domain. Importantly, we unveil a power-law scaling regarding to the size of the bandgap within which the large-area helical states reside as a function of the width of the middle domain, which implies that these large-area modes in principle could exist in the middle domain with arbitrary width. Moreover, pseudospin-momentum locking unidirectional propagations and robustness of these large-area waveguide modes against sharp bends are explicitly demonstrated. Our work enlarges the photonic systems and platforms that could be utilized for large-area-mode enabled topological waveguiding.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心