Your conditions: Wang Zhang
  • Generation of robust spatiotemporal optical vortices with transverse orbital angular momentum beyond $10^2$

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Recently, photons have been observed to possess transverse orbital angular momentum (OAM); however, it is unclear as whether they can hold a transverse OAM higher than 1. Here, we theoretically and experimentally demonstrate that high-order spatiotemporal Bessel optical vortices (STBOVs) can stably carry transverse OAM even beyond $10^2$. Through the inverse design of the spiral phase, an STBOV of any order can be controllably generated using a 4f pulse shaper. In contrast to conventional longitudinal OAM, the vector direction of the transverse OAM can be distinguished by the unique time-symmetrical evolution of STBOVs. More interestingly, the stability of STBOVs improves with their increasing orders owing to enhanced space-time coupling, making these beams particularly suitable for the generation of ultra-high transverse OAM. Our work paves the way for further research and application of this unique OAM of photons.

  • Reconfiguring colours of single relief structures by directional stretching

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Colour changes can be achieved by straining photonic crystals or gratings embedded in stretchable materials. However, the multiple repeat units and the need for a volumetric assembly of nanostructures limit the density of information content. Inspired by surface reliefs on oracle bones and music records as means of information archival, here we endow surface-relief elastomers with multiple sets of information that are accessible by mechanical straining along in-plane axes. Distinct from Bragg diffraction effects from periodic structures, we report trenches that generate colour due to variations in trench depth, enabling individual trench segments to support a single colour. Using 3D printed cuboids, we replicated trenches of varying geometric parameters in elastomers. These parameters determine the initial colour (or lack thereof), the response to capillary forces, and the appearance when strained along or across the trenches. Strain induces modulation in trench depth or the opening and closure of a trench, resulting in surface reliefs with up to six distinct states, and an initially featureless surface that reveals two distinct images when stretched along different axes. The highly reversible structural colours are promising in optical data archival, anti-counterfeiting, and strain-sensing applications.

  • Colorful Optical Vortices with White Light Illumination

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The orbital angular momentum (OAM) of light holds great promise for applications in optical communication, super-resolution imaging, and high-dimensional quantum computing. However, the spatio-temporal coherence of the light source has been essential for generating OAM beams, as incoherent ambient light would result in polychromatic and obscured OAM beams in the visible spectrum. Here, we extend the applications of OAM to ambient lighting conditions. By miniaturizing spiral phase plates and integrating them with structural color filters, we achieve spatio-temporal coherence using only an incoherent white light source. These optical elements act as building blocks that encode both color and OAM information in the form of colorful optical vortices. Thus, pairs of transparent substrates that contain matching positions of these vortices constitute a reciprocal optical lock and key system. Due to the multiple helical eigenstates of OAM, the pairwise coupling can be further extended to form a one-to-many matching and validation scheme. Generating and decoding colorful optical vortices with broadband white light could find potential applications in anti-counterfeiting, optical metrology, high-capacity optical encryption, and on-chip 3D photonic devices.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China