您选择的条件: Qian Liang
  • Circularly Polarized Lasing from a Microcavity Filled with Achiral Single-Crystalline Microribbons

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Organic circularly polarized (CP) lasers have received increasing attention due to their future photoelectric applications. Here, we demonstrate a CP laser from a pure organic crystal-filled microcavity without any chiral molecules or chiral structures. Benefited from the giant anisotropy and excellent laser gain of organic crystals, optical Rashba-Dresselhaus spin-orbit coupling effect can be induced and is conductive to the CP laser in such microcavities. The maximum dissymmetry factor of the CP lasing with opposite helicities reached, is as high as 1.2. Our strategy may provide a new idea for the design of CP lasers towards future 3D laser displays, information storage and other fields.

  • Quantum time reflection and refraction of ultracold atoms

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Time reflection and refraction are temporal analogies of the spatial boundary effects derived from Fermat's principle. They occur when classical waves strike a time boundary where an abrupt change in the properties of the medium is introduced. The main features of time-reflected and refracted waves are the shift of frequency and conservation of momentum, which offer a new degree of freedom for steering extreme waves and controlling phases of matter. The concept was originally proposed for manipulating optical waves more than five decades ago. However, due to the extreme challenges in the ultrafast engineering of the optical materials, the experimental realization of the time boundary effects remains elusive. Here, we introduce a time boundary into a momentum lattice of ultracold atoms and simultaneously demonstrate the time reflection and refraction experimentally. Through launching a Gaussian-superposed state into the Su-Schrieffer-Heeger (SSH) atomic chain, we observe the time-reflected and refracted waves when the input state strikes a time boundary. Furthermore, we detect a transition from time reflection/refraction to localization with increasing strength of disorder and show that the time boundary effects are robust against considerable disorder. Our work opens a new avenue for future exploration of time boundaries and spatiotemporal lattices, and their interplay with non-Hermiticity and many-body interactions.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心