您选择的条件: Peng Hu
  • Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers.

  • Bound States in the Continuum Based on the Total Internal Reflection of Bloch Waves

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A photonic-crystal slab can support bound states in the continuum (BICs) which have infinite lifetimes but embedded into the continuous spectrum of optical modes in free space. The formation of BICs requires a total internal reflection (TIR) condition at both interfaces between the slab and free space. Here, we show that the TIR of Bloch waves can be directly obtained based on the generalized Fresnel equations proposed. If each of these Bloch waves picks up a phase with integer multiples of 2pi for traveling a round trip, light can be perfectly guided in the slab, namely, forming a BIC. A BIC solver with low computational complexity and fast convergence speed is developed, which can also work efficiently at high frequencies beyond the diffraction limit where multiple radiation channels exist. Two examples of multi-channel BICs are shown, and their topological nature in momentum space is also revealed. Both can be attributed to the coincidence of the topological charges of far-field radiations from different radiation channels. The concept of the generalized TIR and the TIR-based BIC solver developed offer highly effective approaches for explorations of BICs which could have many potential applications in guided-wave optics and enhanced light-matter interactions.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心