您选择的条件: Xianfeng Chen
  • Simultaneous $ \chi^{(2)} $- $ \chi^{(2)} $ and $ \chi^{(2)} $-$ \chi^{(3)} $ nonlinear processes generation in thin film lithium tantalate microcavity

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: On-chip efficient nonlinear functions are instrumental in escalating the utilities and performance of photonic integrated circuits (PICs), especially for a wide range of classical and quantum applications, such as tunable coherent radiation, optical frequency conversion, spectroscopy, quantum science, etc. Lithium tantalate (LT) has been widely used in nonlinear wavelength converters, surface acoustic wave resonators, and electro-optic, acoustic-optic devices owing to its excellent optical properties. Here, we fabricated a Z-cut lithium tantalate on insulator (LTOI) microdisk with high quality(Q) factors in both telecom (10$^{6}$) and visible (10$^{5}$) bands by optimizing the fabrication. With the Q factor of the LTOI microdisk increasing, we can obtain higher pump light intensity in the cavity which is beneficial to get more optical nonlinear effect easily. By making use of the mode phase matching of interacting waves and inputting high pump power, we experimentally observed on-chip near-infrared light, visible (red, green), and ultraviolet (UV) from microresonator-based $ \chi^{(2)}-\chi^{(2)}$, $ \chi^{(2)}-\chi^{(3)}$, and $\chi^{(2)}$ nonlinear processes such as cascaded four-wave mixing (cFWM), cascaded sum-frequency generation (cSFG), third harmonic generation (THG), second harmonic generation (SHG). It is believed that the LTOI can support a variety of on-chip optical nonlinear processes, which heralds its new application potential in integrated nonlinear photonics.

  • Integrated spiral waveguide amplifiers on erbium-doped thin-film lithium niobate

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Integrated optical amplifiers and light sources are of great significance for photonic integrated circuits (PICs) and have attracted many research interests. Doping rare-earth ions in materials as a solution to realize efficient optical amplifiers and lasing has been investigated a lot. We investigate the erbium-doped lithium niobate on insulator (LNOI). Here, spiral waveguide amplifiers were fabricated on a 1-mol\% erbium-doped LNOI by CMOS-compatible technique. We demonstrated a maximum internal net gain of 8.3 dB at 1530 nm indicating a net gain per unit length of 15.6 dB/cm with a compact spiral waveguide of 5.3 mm length and $ \sim $0.06 mm$ ^{2} $ footprint. The erbium-doped integrated lithium niobate spiral waveguide amplifiers would pave the way in the PICs of the lithium niobate platform, especially in achieving efficient integration of active and passive devices on a lithium niobate thin film, which will make full use of its excellent physical properties such as remarkable photoacoustic, electro-optic, and piezoelectric characteristics.

  • Doubly resonant photonic crystal cavity using merged bound states in the continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In this work, a doubly resonant photonic crystal (PhC) cavity using the merged bound states in the continuum (BICs) is proposed to obtain a higher second harmonic generation (SHG) efficiency. Firstly by scanning geometry parameters the accidental BICs and a band-edge mode outside the light cone can be obtained. Then as the lattice constant or the thickness of the slab is adjusted the accidental BICs will merge. A supercell with large and small holes is constructed and the band-edge mode outside the light cone can be mode-matched with the merged BICs mode. Finally the heterostructure PhC cavity is designed. The merged BICs show a high quality factor for the photonic crystal with finite size. Consequently, the SHG efficiency of the lattice constant near merged BICs of ~6000% W-1 is higher than the one of the isolated BIC.

  • Simulating graphene dynamics in one-dimensional modulated ring array with synthetic dimension

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A dynamically-modulated ring system with frequency as a synthetic dimension has been shown to be a powerful platform to do quantum simulation and explore novel optical phenomena. Here we propose synthetic honeycomb lattice in a one-dimensional ring array under dynamic modulations, with the extra dimension being the frequency of light. Such system is highly re-configurable with modulation. Various physical phenomena associated with graphene including Klein tunneling, valley-dependent edge states, effective magnetic field, as well as valley-dependent Lorentz force can be simulated in this lattice, which exhibits important potentials for manipulating photons in different ways. Our work unveils a new platform for constructing the honeycomb lattice in a synthetic space, which holds complex functionalities and could be important for optical signal processing as well as quantum computing.

  • Single Pulse Manipulations in Synthetic Time-frequency Space

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Synthetic dimensions in photonic structures provide unique opportunities for actively manipulating light in multiple degrees of freedom. Here, we theoretically explore a dispersive waveguide under the dynamic phase modulation that supports single pulse manipulations in the synthetic (2+1) dimensions. Compared with the counterpart of the conventional (2+1) space-time, we explore temporal diffraction and frequency conversion in a synthetic time-frequency space while the pulse evolves along the spatial dimension. By introducing the effective gauge potential well for photons in the synthetic time-frequency space with the control of the modulation phase, we show that a rich set of pulse propagation behaviors can be achieved, including confined pulse propagation, fast/slow light, and pulse compression. With the additional nonlinear oscillation subject to the effective force along the frequency axis of light, we provide an exotic approach for actively manipulating the single pulse in both temporal and spectral domains, which shows the great promise for applications of the pulse processing and optical communications in integrated photonics.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心