您选择的条件: Feng-Jiang Liu
  • Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive surface force ($\sim\mu\rm N$) between solid interfaces that makes tiny optical driven force ($\sim\rm pN$) insignificant. Here, by recognizing the microscopic interaction mechanism between friction force -- the parallel component of surface force on the contact surface -- and thermoelastic waves induced by pulsed optical absorption, we establish a general principle enabling the actuation of micro-objects on dry frictional surfaces based on the opto-thermo-mechanical effects. Theoretically, we predict that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame $\mu\rm N$-scale friction force. Experimentally, we demonstrate that two-dimensional spiral motion of gold plates on micro-fibers driven by a nanosecond pulsed laser, and reveal the specific rules of motion control. Our results pave the way for future development of micro-scale actuators in nonliquid environments.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心