Your conditions: Yuan Chen
  • Unraveling the Angular Symmetry of Optical Force in a Solid Dielectric

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.

  • Non-reciprocal frequency conversion and mode routing in a microresonator

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The transportation of photons and phonons typically obeys the principle of reciprocity. Breaking reciprocity of these bosonic excitations will enable the corresponding non-reciprocal devices, such as isolators and circulators. Here, we use two optical modes and two mechanical modes in a microresonator to form a four-mode plaquette via radiation pressure force. The phase-controlled non-reciprocal routing between any two modes with completely different frequencies is demonstrated, including the routing of phonon to phonon (MHz to MHz), photon to phonon (THz to MHz), and especially photon to photon with frequency difference of around 80 THz for the first time. In addition, one more mechanical mode is introduced to this plaquette to realize a phononic circulator in such single microresonator. The non-reciprocity is derived from interference between multi-mode transfer processes involving optomechanical interactions in an optomechanical resonator. It not only demonstrates the non-reciprocal routing of photons and phonons in a single resonator but also realizes the non-reciprocal frequency conversion for photons and circulation for phonons, laying a foundation for studying directional routing and thermal management in an optomechanical hybrid network.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China