• Nanomotion of micro-objects driven by light-induced elastic waves on solid interfaces

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: It has been recently reported that elastic waves induced by nanosecond light pulses can be used to drive nano-motion of micro-objects on frictional solid interfaces, a challenging task for traditional techniques using tiny optical force. In this technique, the main physical quantities/parameters involved are: temporal width and energy of light pulses, thermal heating and cooling time, friction force and elastic waves. Despite a few experimental observations based on micro-fiber systems, a microscopic theory, which reveals how these quantities collaboratively enable motion of the micro-objects and derives what the underlying manipulation principles emerge, is absent. In this article, a comprehensive theoretical analysis--centralized around the above listed physical quantities, and illuminated by a single-friction-point model in conjunction with numerical simulations--is established to pedagogically clarify the physics. Our results reveal the two essential factors in this technique: (1) the use of short light pulses for rapid thermal expansion overwhelming friction resistance and (2) the timescale asymmetry in thermal heating and cooling for accumulating a net sliding distance. Moreover, we examine the effects of spatially distributed friction beyond the single-friction-point consideration, and show "tug-of-war"-like friction stretching in the driving process. Given these insights, we positively predict that this elastic-wave-based manipulation principle could be directly translated to micro/nano-scale optical waveguides on optical chips, and propose a practical design. We wish that these results offer theoretical guidelines for ongoing efforts of optical manipulation on solid interfaces with light-induced elastic waves.

  • Light-induced in-plane Rotation of Microobjects on Microfibers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The transfer of angular momentum carried by photons into a microobject has been widely exploited to achieve the actuation of the microobject. However, this scheme is fundamentally defective in nonliquid environments as a result of the scale gap between friction forces ($\mu$N) and optical forces (pN). To bypass this challenge, the researchers have recently proposed to take advantage of elastic waves based on opto-thermo-mechanical effects [1-4]. Grounded on this insight, we here demonstrate and characterize the in-plane rotation of a gold nanoplate in its surface contacting with a microfiber, driven by nanosecond laser pulses, which has not been explored before. Furthermore, we examine the underlying physical mechanisms and highlight the essential role of the spatial gradient of optical absorption. The combined experimental and theoretical results offer new insights into the study of the light-induced actuation of the microobjects in nonliquid environments, an emerging field far from being mature in both comprehensive understanding and practical applications.

  • High-speed laser writing of structural colors for full-color inkless printing

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: It is a formidable challenge to simultaneously achieve wide gamut, high resolution, high-speed while low-cost manufacturability, long-term stability, and viewing-angle independence in structural colors for practical applications. The conventional nanofabrication techniques fail to match the requirement in low-cost, large-scale and flexible manufacturing. Processing by ultrashort lasers can achieve extremely high throughput while suffering from a narrow gamut of 15% sRGB or angle-dependent colors. Here, we demonstrate an all-in-one solution for ultrafast laser-produced structural colors on ultrathin hybrid films that comprise an absorbent TiAlN layer coating on a metallic TiN layer. Under pulsed laser irradiation, the absorption behaviors of the TiAlN-TiN hybrid films are tailored by photothermal-induced oxidation on the topmost TiAlN. The oxidized films exhibit double-resonance absorption, which is attributed to the non-trivial phase shifts both at the oxide-TiAlN interface, and at the TiAlN-TiN interface. By varying the accumulated laser fluence to modulate the oxidation depth, an unprecedented large gamut of 90% sRGB is obtained. Our highly reproducible printing technique manifests angle-insensitive colors the variation of Hue is <0.14pi when viewing angles changing from 6 to 60. The full-color printing speed reaches to 1.4 cm2/s and the highest printing resolution exceeds 25000 dpi. The durability of the laser-printed colors is confirmed by fastness examination, including salt fog, double-85, light bleaching, and adhesion tests. These features render our technique to be competitive for high-throughput industrial applications.

  • Probing rotated Weyl physics on nonlinear lithium niobate-on-insulator chips

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics, featured by stable topological edge states resistant to perturbations, has been utilized to design robust integrated devices. Here, we present a study exploring the intriguing topological rotated Weyl physics in a 3D parameter space based on quaternary waveguide arrays on lithium niobate-on-insulator (LNOI) chips. Unlike previous works that focus on the Fermi arc surface states of a single Weyl structure, we can experimentally construct arbitrary interfaces between two Weyl structures whose orientations can be freely rotated in the synthetic parameter space. This intriguing system was difficult to realize in usual 3D Weyl semimetals due to lattice mismatch. We found whether the interface can host gapless topological interface states (TISs) or not, is determined by the relative rotational directions of the two Weyl structures. In the experiment, we have probed the local characteristics of the TISs through linear optical transmission and nonlinear second harmonic generation. Our study introduces a novel path to explore topological photonics on LNOI chips and various applications in integrated nonlinear and quantum optics.

  • Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Realizing optical manipulation of microscopic objects is crucial in the research fields of life science, condensed matter physics and physical chemistry. In non-liquid environments, this task is commonly regarded as difficult due to strong adhesive surface force ($\sim\mu\rm N$) between solid interfaces that makes tiny optical driven force ($\sim\rm pN$) insignificant. Here, by recognizing the microscopic interaction mechanism between friction force -- the parallel component of surface force on the contact surface -- and thermoelastic waves induced by pulsed optical absorption, we establish a general principle enabling the actuation of micro-objects on dry frictional surfaces based on the opto-thermo-mechanical effects. Theoretically, we predict that nanosecond pulsed optical absorption with mW-scale peak power is sufficient to tame $\mu\rm N$-scale friction force. Experimentally, we demonstrate that two-dimensional spiral motion of gold plates on micro-fibers driven by a nanosecond pulsed laser, and reveal the specific rules of motion control. Our results pave the way for future development of micro-scale actuators in nonliquid environments.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心