• All-optical graph representation learning using integrated diffractive photonic computing units

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic neural networks perform brain-inspired computations using photons instead of electrons that can achieve substantially improved computing performance. However, existing architectures can only handle data with regular structures, e.g., images or videos, but fail to generalize to graph-structured data beyond Euclidean space, e.g., social networks or document co-citation networks. Here, we propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN), based on the integrated diffractive photonic computing units (DPUs) to address this limitation. Specifically, DGNN optically encodes node attributes into strip optical waveguides, which are transformed by DPUs and aggregated by on-chip optical couplers to extract their feature representations. Each DPU comprises successive passive layers of metalines to modulate the electromagnetic optical field via diffraction, where the metaline structures are learnable parameters shared across graph nodes. DGNN captures complex dependencies among the node neighborhoods and eliminates the nonlinear transition functions during the light-speed optical message passing over graph structures. We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance. Our work opens up a new direction for designing application-specific integrated photonic circuits for high-efficiency processing of large-scale graph data structures using deep learning.

  • EEG Opto-processor: epileptic seizure detection using diffractive photonic computing units

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Electroencephalography (EEG) analysis extracts critical information from brain signals, which has provided fundamental support for various applications, including brain-disease diagnosis and brain-computer interface. However, the real-time processing of large-scale EEG signals at high energy efficiency has placed great challenges for electronic processors on edge computing devices. Here, we propose the EEG opto-processor based on diffractive photonic computing units (DPUs) to effectively process the extracranial and intracranial EEG signals and perform epileptic seizure detection. The signals of EEG channels within a second-time window are optically encoded as inputs to the constructed diffractive neural networks for classification, which monitors the brain state to determine whether it's the symptom of an epileptic seizure or not. We developed both the free-space and integrated DPUs as edge computing systems and demonstrated their applications for real-time epileptic seizure detection with the benchmark datasets, i.e., the CHB-MIT extracranial EEG dataset and Epilepsy-iEEG-Multicenter intracranial EEG dataset, at high computing performance. Along with the channel selection mechanism, both the numerical evaluations and experimental results validated the sufficient high classification accuracies of the proposed opto-processors for supervising the clinical diagnosis. Our work opens up a new research direction of utilizing photonic computing techniques for processing large-scale EEG signals in promoting its broader applications.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心