• Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Encoding information in light polarization is of great importance in facilitating optical data storage (ODS) for information security and data storage capacity escalation. However, despite recent advances in nanophotonic techniques vastly enhancing the feasibility of applying polarization channels, the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process, which gravely hindered the utilization of this technique in practice. In this paper, we demonstrate an ultra-low crosstalk polarization-encoding multilayer optical data storage technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocomposite film involving highly aligned gold nanorods (GNRs). With parallelizing the gold nanorods in the recording medium, the information carrier configuration minimizes miswriting and misreading possibilities for information input and output, respectively, compared with its randomly self-assembled counterparts. The enhanced data accuracy has significantly improved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99. It is anticipated that the demonstrated technique can facilitate the development of multiplexing ODS for a greener future.

  • Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Recently, high-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of HOTIs, very recent works have explored the square-root HOTIs, where the topological nontrivial nature of bulk bands stems from the square of the Hamiltonian. In this paper, we experimentally demonstrate 2D square-root HOTIs in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. Edge and corner states are clearly observed through visible light spectra. The dynamical evolutions of topological boundary states are experimentally demonstrated, which further verify the existence of in-gap edge and corner states. The robustness of these edge and corner states is revealed by introducing defects and disorders into the bulk structures. Our studies provide an extended platform for realizing light manipulation and stable photonic devices.

  • Plug-Play Plasmonic Metafibers for Ultrafast Fiber Lasers

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Metafibers expand the functionalities of conventional optical fibers to unprecedented nanoscale light manipulations by integrating metasurfaces on the fiber tips, becoming an emerging light-coupling platform for both nanoscience and fiber optics communities. Mostly exploring the isolated bare fibers, current metafibers remain as proof-of-concept demonstrations due to a lack of standard interfaces with the universal fiber networks. Here, we develop new methodologies to fabricate well-defined plasmonic metasurfaces directly on the end facets of commercial single mode fiber jumpers using standard planar technologies and provide a first demonstration of their practical applications in the nonlinear optics regime. Featuring plug-play connections with fiber circuitry and arbitrary metasurfaces landscapes, the metafibers with tunable plasmonic resonances are implemented into fiber laser cavities, yielding all-fiber sub-picosecond (minimum 513 fs) soliton mode locked lasers at optical wavelengths of 1.5 micrometer and 2 micrometer, demonstrating their unusual polarimetric nonlinear transfer functions and superior saturation absorption responses. Novel insights into the physical mechanisms behind the saturable absorption of plasmonic metasurfaces are provided. The nanofabrication process flow is compatible with existing cleanroom technologies, offering metafibers an avenue to be a regular member of functionalized fiber components. The work paves the way towards next generation of ultrafast fiber lasers, optical frequency combs, optical neural networks and ultracompact "all-in-fibers" optical systems for sensing, imaging, communications, and many others.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心