• Magnet-free nonreciprocal metasurface for on-demand bi-directional phase modulation

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Unconstrained by Lorentz reciprocity, nonreciprocal metasurfaces are uniquely capable of encoding distinctive optical functions on forward- and backward-propagating waves. The nonreciprocal metasurfaces reported to date require external electric or magnetic field biasing or rely on nonlinear effects, both of which are challenging to practically implement. Here, we propose and experimentally realize a magnet-free, linear, and passive nonreciprocal metasurface based on self-biased magnetic meta-atoms. Record transmittance up to 77% and operation angle reaching 64 degree are experimentally demonstrated. Moreover, on-demand bidirectional phase modulation in a "LEGO-like" manner is theoretically proposed and experimentally demonstrated, enabling a cohort of nonreciprocal functionalities such as microwave isolation, nonreciprocal beam steering, nonreciprocal focusing, and nonreciprocal holography. The design can also be extended to MHz and optical frequencies, taking advantage of the wide variety of self-biased gyrotropic materials available. We foresee that the nonreciprocal metasurfaces demonstrated in this work will have a significant practical impact for applications ranging from nonreciprocal antennas and radomes to full-duplex wireless communication and radar systems.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China