• Active beam steering enabled by photonic crystal surface emitting laser

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Emitting light towards on-demand directions is important for various optoelectronic applications, such as optical communication, displaying, and ranging. However, almost all existing directional emitters are assemblies of passive optical antennae and external light sources, which are usually bulky, fragile, and with unendurable loss of light power. Here we theoretically propose and experimentally demonstrate a new conceptual design of directional emitter, by using a single surface-emitting laser source itself to achieve dynamically controlled beam steering. The laser is built on photonic crystals that operates near the band edges in the continuum. By shrinking laser sizes into tens-of-wavelength, the optical modes quantize in three-dimensional momentum space, and each of them directionally radiates towards the far-field. Further utilizing the luminescence spectrum shifting effect under current injection, we consecutively select a sequence of modes into lasing action and show the laser maintaining in single mode operation with linewidths at a minimum of $1.8$ MHz and emitting power of $\sim$ ten milliwatts, and we demonstrate fast beam steering across a range of $3.2^\circ \times 4^\circ$ in a time scale of $500$ nanoseconds. Our work proposes a novel method for on-chip active beam steering, which could pave the way for the development of automotive, industrial, and robotic applications.

  • Low-threshold nanolasers based on miniaturized bound states in the continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The pursuit of compact lasers with low-thresholds has imposed strict requirements on tight light confinements with minimized radiation losses. Bound states in the continuum (BICs) have been recently demonstrated as an effective mechanism to trap light along the out-of-plane direction, paving the way to low-threshold lasers. To date, most reported BIC lasers are still bulky due to the absence of in-plane light confinement. In this work, we combine BICs and photonic band gaps to realize three-dimensional (3D) light confinements, as referred to miniaturized (mini-) BICs. Together with 3D carrier confinements provided by quantum dots (QDs) as optical gain materials, we have realized highly-compact active BIC resonators with a record-high quality ($Q$) factor up to 32500, which enables single-mode continuous wave (CW) lasing with the lowest threshold of 80 W/cm$^{2}$ among the reported BIC lasers. In addidtion, our photon statistics measurements under both CW and pulsed excitations confirm the occurence of the phase transition from spontaneous emission to stimulated emission, further suggesting that conventional criteria of input-output and linewidth are not sufficient for claiming nanoscale lasing. Our work reveal a via path towards compact BIC lasers with ultra-low power consumption and potentially boost the applications in cavity quantum electrodynamics (QEDs), nonlinear optics and integrated photonics.

  • Slow light silicon modulator beyond 110 GHz bandwidth

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Silicon modulators are key components in silicon photonics to support the dense integration of electro-optic (EO) functional elements on a compact chip for various applications including high-speed data transmission, signal processing, and photonic computing. Despite numerous advances in promoting the operation speed of silicon modulators, a bandwidth ceiling of 67 GHz emerges in practices and becomes an obstacle to paving silicon photonics toward Tbps level data throughput on a single chip. Here, we theoretically propose and experimentally demonstrate a design strategy for silicon modulators by employing the slow light effect, which shatters the present bandwidth ceiling of silicon modulators and pushes its limit beyond 110 GHz in a small footprint. The proposed silicon modulator is built on a coupled-resonator optical waveguide (CROW) architecture, in which a set of Bragg gratings are appropriately cascaded to give rise to a slow light effect. By comprehensively balancing a series of merits including the group index, photon lifetime, electrical bandwidth, and losses, we found the modulators can benefit from the slow light for better modulation efficiency and compact size while remaining their bandwidth sufficiently high to support ultra-high-speed data transmission. Consequently, we realize a modulator with an EO bandwidth of 110 GHz in a length of 124 {\mu}m, and demonstrate a data rate beyond 110 Gbps by applying simple on-off keying modulation for a DSP-free operation. Our work proves that silicon modulators beyond 110 GHz are feasible, thus shedding light on the potentials of silicon photonics in ultra-high-bandwidth applications such as data communication, optical interconnection, and photonic machine learning.

  • Unconditional and robust quantum metrological advantage beyond NOON states

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Quantum metrology employs quantum resources to enhance the measurement sensitivity beyond that can be achieved classically. While multi-photon entangled NOON states can in principle beat the shot-noise limit and reach the Heisenberg limit, high NOON states are difficult to prepare and fragile to photon loss which hinders it from reaching unconditional quantum metrological advantages. Here, we combine the idea of unconventional nonlinear interferometers and stimulated emission of squeezed light, previously developed for photonic quantum computer Jiuzhang, to propose and realize a new scheme that achieves a scalable, unconditional, and robust quantum metrological advantage. We observe a 5.8(1)-fold enhancement above the shot-noise limit in the Fisher information extracted per photon, without discounting for photon loss and imperfections, which outperforms ideal 5-NOON states. The Heisenberg-limited scaling, the robustness to external photon loss, and the ease-to-use of our method make it applicable in practical quantum metrology at low photon flux regime.

  • Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The tantalizing promise of quantum computational speedup in solving certain problems has been strongly supported by recent experimental evidence from a high-fidelity 53-qubit superconducting processor1 and Gaussian boson sampling (GBS) with up to 76 detected photons. Analogous to the increasingly sophisticated Bell tests that continued to refute local hidden variable theories, quantum computational advantage tests are expected to provide increasingly compelling experimental evidence against the Extended Church-Turing thesis. In this direction, continued competition between upgraded quantum hardware and improved classical simulations is required. Here, we report a new GBS experiment that produces up to 113 detection events out of a 144-mode photonic circuit. We develop a new high-brightness and scalable quantum light source, exploring the idea of stimulated squeezed photons, which has simultaneously near-unity purity and efficiency. This GBS is programmable by tuning the phase of the input squeezed states. We demonstrate a new method to efficiently validate the samples by inferring from computationally friendly subsystems, which rules out hypotheses including distinguishable photons and thermal states. We show that our noisy GBS experiment passes the nonclassicality test using an inequality, and we reveal non-trivial genuine high-order correlation in the GBS samples, which are evidence of robustness against possible classical simulation schemes. The photonic quantum computer, Jiuzhang 2.0, yields a Hilbert space dimension up to $10^{43}$, and a sampling rate $10^{24}$ faster than using brute-force simulation on supercomputers.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心